CSG-CPC
Online Judge

1072 : Modulo Nine

         Time Limit: 5 Sec     Memory Limit: 512 MB     Submitted: 14     Solved: 8    

Description

Bobo has a decimal integer \(\overline{a_{1} a_{2} \dots a_{n}}\), possibly with leading zeros. He knows that for \(m\) ranges \([l_1, r_1], [l_2, r_2], \dots, [l_m, r_m]\), it holds that \(a_{l_i} \times a_{l_i + 1} \times \dots \times a_{r_i} \bmod 9 = 0\). Find the number of valid integers \(\overline{a_1 a_2 \dots a_n}\), modulo \((10^9+7)\).

Input

The input consists of several test cases and is terminated by end-of-file.

The first line of each test case contains two integers \(n\) and \(m\).

The \(i\)th of the following \(m\) lines contains two integers \(l_i\) and \(r_i\).

  • \(1 \leq n, m \leq 50\)
  • \(1 \leq l_i \leq r_i \leq n\)
  • There are at most \(100\) test cases.

Output

For each test case, print an integer which denotes the result.

Sample

2 1
1 2
4 2
1 3
2 4
50 1
1 50
40
4528
100268660

Hint

Author

ftiasch